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Abstract

Ž .Soil grid data were gathered from 156 points in the 30-ha Muizen forest Ranst, Belgium . At
each grid point, soil profiles were examined morphologically by augering to 120-cm depth. In the

Ž .laboratory, pH KCl was determined on samples from every horizon. To allow numerical
analyses, all the morphological attributes were given ordinal scores. The analysis consisted of two
parts. First, the master horizons were split up into subtypes using Principal Components Analysis
and a non-hierarchical clustering technique. This was necessary to overcome the problem of the
anisotropy of the soil profiles, which makes it impossible to pool the data of all the horizons and
analyse them together. Next, the distinguished horizon subtypes were used as input for the
continuous soil profile classification with the ‘fuzzy k-means with extragrades’ algorithm.

Five different soil classes plus an extragrade class were distinguished. The distinguished soil
classes exhibited a fair degree of spatial autocorrelation and correlated well with the Belgian Soil
Map.

The technique developed ensures the compatibility with national or global soil classification
systems based on diagnostic horizons and properties on the one hand and the production of
high-resolution soil classes for local use on the other. Furthermore, the developed technique
allows reanalysis and optimisation of data from previous surveys. q 2001 Elsevier Science B.V.
All rights reserved.
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1. Introduction

Ž .Due to the advancing technology e.g. GPS , an increasing number of high-resolution
data on the spatial distribution of yields, plants, pollutants, etc. is becoming available.
However, most of the existing soil maps lack the appropriate level of detail to combine

Ž .with these data e.g. Bouma et al., 1999 . The soil classes of many of the existing soil
maps are defined in terms of only a limited number of attributes and furthermore, they
are crisply delineated in the geographic space. The latter ignores the fact that soils are

Žnot a definite object but rather an ecological continuum Burrough et al., 1997; de
.Gruijter et al., 1997; Duchaufour, 1998 . Therefore, although these soil maps are

constructed using point observations in the field, the information that can be retrieved
from them is at a considerably higher level of aggregation, namely at the level of the
mapping units.

Ž .Next to this aggregation mismatch sensu de Gruijter et al., 1997 for certain
applications, there is also a changing demand towards soil science. Traditionally, soil
classification systems were oriented towards agriculture. However, there is a growing

Ž .need for soil maps for other e.g. ecological applications, which implies that soil
Žclassification systems have to become more versatile and flexible e.g. Klijn and de

.Waal, 1992; van den Brink et al., 1999 . Therefore, soil geography needs a shift towards
a new, more effective paradigm to fulfil the increasing demand for specific soil data at

Ž .the pedon aggregation level or lower de Gruijter et al., 1997 . New paradigms for local
Ž .soil classification have been proposed by FitzPatrick 1967, 1980, 1993 and by de

Ž . Ž .Gruijter and McBratney 1988 and McBratney and de Gruijter 1992 .
FitzPatrick introduced a coordinate system of soil properties to define so-called

Ž .segments virtual horizons in a multidimensional attribute space. Soil horizons are
assigned to these segments and subsequently each soil profile is described by means of a
soil formula. Finally, soils are classified based on a successive simplification of this
formula.

Ž .McBratney and de Gruijter 1992 argued that a system of discrete soil classes is not
adequate for soil classification and proposed a numerical classification based on fuzzy
sets. This technique still exploits the traditional concept of soil classes, but in a

Ž .thoroughly widened sense Ameskamp, 1997 . Some 30 years ago, the first attempts at
Žthe numerical soil classification was made e.g. Rayner, 1966; Norris, 1971; Moore et

.al., 1972; Webster and Burrough, 1972a,b . However, it never gained wide acceptance
since the numerical taxa derived from local data sets were difficult to relate to soil

Ž .classes at national and international scales Burrough et al., 1997 . The most important
reason for this is the fact that only a few of these studies used the soil horizons as

Ž .classification units e.g. Rayner, 1966; Moore et al., 1972 , while in soil science, it is
widely accepted that diagnostic horizons are the fundamental units of soil classification.
Since numerical classification of soils is impeded by the so-called anisotropy of the

Ž .profiles not all horizons occur everywhere; sensu Moore et al., 1972 , most authors
Žbypassed this problem using soil samples taken at fixed depths Norris, 1971; Webster

.and Burrough, 1972a,b; Oliver and Webster, 1987a,b; Theocharopoulos et al., 1997 .
Furthermore, most of the numerical classification studies used quantitative chemical and
physical soil properties, which makes them difficult to apply in the field.



( )K. Verheyen et al.rGeoderma 101 2001 31–48 33

Therefore, the aim of this study is to explore the possibilities of a numerical soil
classification system which starts from morphological soil properties and uses soil
horizons as the building bricks towards soil profile membership classification. With this
classification system an attempt is made to produce high-resolution soil classes, which
remain compatible to existing higher order frameworks for soil classification.

The onset of this research was an attempt at explaining detailed distribution patterns
Žof the herbaceous ground flora of the Muizen Forest, Belgium Verheyen and Hermy,

.2000 .

Fig. 1. Map of the Muizen forest and the location of the 156 augerings.
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2. Materials and methods

2.1. Study area

Ž .The study was carried out in the 30-ha Muizen Forest Fig. 1 , a deciduous forest
Ž .situated in a flat and low lying 10 m above sea level region near Antwerp in the north

of Belgium. The forest has a complex land-use history. Only its northern part has
probably never been deforested. The southern part on the other hand was entirely
reclaimed for agriculture during the first half of the 19th century. Due to the poor
drainage, most of these fields were soon abandoned and reafforested. However, the drier

Table 1
Ž .Sample profile descriptions of the two soil types of the Muizen Forest Vandamme and Van Hove, 1957

Gleysol
Altitude 9 m
Slope and aspect Level
Land use Meadow

a ŽSoil type uLep strongly gleyic, silt loam soils without profile
.development with a clayey substratum within 80-cm depth

Horizons Ap 0–19 cm: silt loam; 10YR 3r2.5; moderate developed
Ž .crumby structure; very friable; pH KCl : 6.0; % clay: 11.6

A–Cg 19–38 cm: heavy silt loam; 10YR 4r2; structureless;
Ž .very friable; pH KCl : 5.0; % clay: 13.4

2C1g 38–60r65 cm: sandy-clay; 5Y 6r3; structureless;
Ž .very firm; pH KCl : 4.1; % clay: 24.1

2C2g 60r65–85 cm: sandy-clay; 5Y 6r1; structureless;
Ž .slightly sticky, firm; pH KCl : 4.5; % clay 30.9

2C3g 85–120 cm: sandy-clay; 5Y 6r1; structureless;
Ž .slightly sticky, firm; pH KCl : 4.6; % clay: 30.3

2C4g 120–150 cm: sandy-clay; 2.5Y 5r0; structureless;
Ž .sticky, firm; pH KCl : 5.0; % clay: 18.1

Plaggic anthrosol
Altitude 9 m
Slope and aspect Level
Land use Orchard

a ŽSoil type Pcm medium dry to medium wet, sandy loam soils with
.thick, anthropogenic humus A horizon

Horizons Ap1 0–28 cm: sandy loam; 10YR 3r3; structureless;
Ž .very friable; pH KCl : 5.4; % clay: 5.5

Ap2 28–70r76 cm: sandy loam; 10YR 4r3; structureless;
Ž .very friable; pH KCl : 4.2; % clay: 4.9

A2 70r76–100 cm: sandy loam; 10YR 5r6; structureless;
Ž .very friable; pH KCl : 4.3; % clay: 8.7

B2g 100–126 cm: clayey sand; structureless; slightly sticky,
Ž .nonplastic; pH KCl : 4.5; % clay: 12.3

Cg 126–150 cm: sandy clay; structureless; slightly sticky,
Ž .nonplastic; pH KCl : 4.5; % clay: 20.2

a Ž .Series according to the Belgian soil classification system IWONL, 1950 .
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Table 2
Overview of the attributes recorded for the different horizons and their scores

Variable Measurement scale Remarks

Ž .1. Horizon thickness cm Continuous In units of 5 cm
Ž .2. pH KCl-1 M-1:5 suspension Continuous

3. % Ferruginous mottling 0–4 0: none; 1: -2%; 2: 2–20%; 3: 20–50%; 4: )50%
a4. Number of subhorizons 0–2 Number of subhorizons distinguished on the basis of the percentage

of ferruginous mottling
Ž .5. Texture palpation 0–4 0: sand; 1: loamy sand; 2: sandy loam; 3: silt loam; 4: sandy clay

Ž .6. Consistence palpation 0–4 0: loose; 1: very friable; 2: friable; 3: firm; 4: very firm
b7. Cohesion grade 0–3 0: no cohesion; 1: weak; 2: moderate; 3: strong

b8. Cohesion type 0–2 0: massive or single grain; 1: blocky; 2: crumb
b,c9. Size of the blocks 0–2 0: fine; 1: medium; 2: coarse

10. Carbonate content 0–3 0: no detectable effervescence; 1: very feeble effervescence; 2: visible effervescence;
Ž .HCl 10% 3: strong effervescence

11. Value of the dominant 0–3 The Value scores are ranked and 0 is assigned to the minimum value for each
Ž . Ž .colour Munsell soil chart horizon Harden, 1982 .

Ž .12. Hue of the dominant 0–5 The Hue scores were ranked 10Yr7.5Yr5Yr2.5Yr10YRr7.5YRr5YRr2.5YR
Ž . Ž .colour Munsell soil chart and 0 is assigned to the minimum value for each horizon Harden, 1982 .

13. Chroma of the dominant 0–5 The Chroma scores are ranked and 0 is assigned to the minimum value for each
Ž . Ž .colour Munsell soil chart horizon Harden, 1982 .

14. No. of distinct colours 1–3 Number of other colours, other than the dominant colour, present in the horizon
awithin a horizon

Ž . Ž .15. Rubification calculated 0–10 Sum of Hue and Chroma Harden, 1982

For the size of the blocks, there is no pedogenetic trend for the C and 2C horizon.
aOnly for the C and 2C horizons.
bRanked on the basis of the pedogenetic development.
cOnly for the A horizon.
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parcels at the forest margins were only abandoned and reafforested during the second
Ž .half of the 20th century De Keersmaeker et al., 1999 .

The soils of the Muizen Forest are developed in Quarternary niveo-aeolian sandy
loam and silt loam deposits with a sandy-clay layer of Tertiary marine origin at
approximately 1-m depth. This substratum has a variable fossil shell lime content. On

Ž .the Belgian Soil Map Fig. 7; De Coninck, 1963 the soils of the drier parts were
Ž .classified as Pcm Belgian soil classification system , which correlate with Plaggic

Ž .Anthrosols in the World Reference Base of Soil Resources W.R.B.; FAO et al., 1998 .
The soils of the wetter parcels were mapped as uLep which key out as Gleysols in

Ž .W.R.B. FAO et al., 1998 . Sample soil profile descriptions are given in Table 1
Ž .Vandamme and Van Hove, 1957 . It should be noted that in both profiles the B horizon
is absent or only weakly developed. This is due to presence of the sandy-clay substratum
that slows down drainage and hence illuviatial accumulation of clay hardly occurs.

Fig. 2. Biplot of the first two Principal Components of the C1 horizon.
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2.2. Data collection

Between the beginning of August and the end of September 1998, data were collected
Ž .from 156 points on a regular 40 m=40 m grid Fig. 1 . At each grid point, soil profiles

were examined morphologically by augering with an Edelman auger to 120-cm depth
Ž .cf. Bossuyt et al., 1999 . The profiles were described using horizons for which 13

Ž .attributes Table 2 were recorded in the field. This was done according to the FAO
Ž . Ž . Žguidelines for Soil Profile Description FAO, 1990 . Additionaly, the pH KCl 1 M, 1:5

.suspension was determined on samples from every horizon in the laboratory and a
Žrubification score was calculated by adding the colour hue and chroma scores cf.

.Harden, 1982 . Apart from these colour attributes, the other morphological attributes
Ž .were assigned scores on an ordinal scale too Table 2 .

Ž .Nine horizon types were distinguished in the field: A1, A2, A3, A buried , C1, C2,b

C3, 2C1 and 2C2.

2.3. Data analysis

The analysis consists of two parts: first, the above mentioned horizons were split up
into horizon subtypes and next—using these subtypes—the soil profiles were continu-
ously classified.

If anisotropy is absent, which means that all profiles have the same horizons, the first
Ž .step becomes redundant. In that case, the attribute matrix with 156 augerings rows and

Ž . Ž .N the fixed number of horizons =15 attributes columns can be readily analysed
Ž .using ordination and classification techniques cf. Theocharopoulos et al., 1997 .

2 Ž .Fig. 3. Plot of g L g is the number of subhorizons and L is the Wilk’s criterion as a funtion of g to
determine the optimal number of subhorizons of C1.
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Fig. 4. Scatterplot of the first two discriminant functions for the four C1 subhorizons. The black squares are
2 Ž .'the group centroids and the circles with radius rs x 2 df enclose the 90% confidence interval.

Ž X .Fig. 5. Plot of the ‘fuzziness performance index’ F as a funtion of g to determine the optimal number of
Ž . Ž . y7soil classes. The fuzziness exponent w equals 1.3 and the extragrade exponent a equals 2=10 .
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However, when not all horizons occur at every location, it is impossible to pool the data
of all the horizons and analyse them together. To overcome this problem, the horizons
were first split up into more homogeneous horizon subtypes on the basis of their
attributes. Subsequently, these horizon subtypes were used to create an augering=

Ž .horizon subtypes matrix, which is filled with the horizon subtypes thicknesses in cm
for each augering and 0s if subtypes were absent. This matrix allowed to perform the
continuous classification of the soil profiles.

2.3.1. The delineation of horizon subtypes
Ž .Only six horizons were split up into more homogeneous subtypes. The A3 ns20 ,

Ž . Ž . Ž .A ns4 ,C3 ns10 and 2C2 ns15 horizons were not split up since there wereb

too few observations.
First, six Principal Component Analyses were performed on the attributes of the

Ž .horizons using CANOCO 4 Ter Braak and Smilauer, 1998 . To simplify the final
interpretation of the distinguished horizon subtypes, it was decided to select only the
most important attributes for the deliniation of the subtypes instead of using all the

Table 3
Class centres of the five distinguished soil classes; the horizon sub-type thicknesses are in centimeters

Ž .Horizon sub- type Soil class

1 2 3 4 5

A1-I 1 0 1 1 1
A1-II 3 3 3 3 2
A1-III 1 1 0 1 0

aA1 5 4 4 5 3
A2-I 5 6 17 14 2
A2-II 9 9 3 2 1
A2-III 6 8 5 6 28

aA2 20 23 25 22 31
A3 2 3 1 3 7
C1-I 1 4 1 32 2
C1-II 1 7 39 1 1
C1-III 40 10 2 3 2
C1-IV 1 4 1 1 35

aC1 43 25 43 37 40
Ab 0 0 1 3 0
C2-I 4 9 3 5 8
C2-II 5 4 1 2 1
C2-III 4 4 4 1 1
C2-IV 2 5 1 6 12

aC2 15 22 9 14 22
C3 0 3 0 1 5
2C1-I 0 1 0 9 2
2C1-II 5 3 35 20 3
2C1-III 25 30 1 2 6

a2C1 30 34 36 31 11
2C2 4 3 1 3 1

a Thickness equals the sum of the distinguished horizon subtypes.
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attributes or the principal component scores. When selecting the attributes, it was
controlled for that the exclusion of horizon attributes did not significantly alter the
configuration of the grid points in the space of the resulting principal axes.

Next, the different horizons were split up into subtypes using the selected attributes.
Ž . Ž .Webster and Oliver 1990 and McBratney and de Gruijter 1992 recommend the use of

non-hierarchical clustering techniques for soils. Therefore, it was opted to apply a
Ž .partitioning method with the Wilk’ s criterion L , which seeks the minimise the

determinant of the within group sums of squares matrix. To determine the optimal
Ž . 2number of subtypes g within each horizon, g L was used as criterion: a sudden drop

2 Žof g L in function of g indicates the optimal number of clusters Marriott, 1971; see
.also Webster and Burrough, 1972a; Oliver and Webster, 1987a . The clustering was

Ž .performed with GENSTAT 5r4.1 1997 . To simplify the interpretation of the distin-
guished horizon subtypes, canonical discriminant functions were calculated for each

Ž .horizon using SPSS 8.0 1998 .
Ž .Finally, the augering=horizon sub type matrix was created, using the distinguished

horizon subtypes together with the A3, A , C3 and 2C2 horizons and their respectiveb
Ž .thicknesses. The resulting matrix was sparse 82% 0s , as most horizon subtypes were

often absent.

2.3.2. Continuous soil profile classification
Continuous classification was done with the ‘fuzzy k-means with extragrades’

Žalgorithm de Gruijter and McBratney, 1988; McBratney and de Gruijter, 1992; de

Fig. 7. Geographical representation of the memberships of the five continuous soil classes plus the extragrade
Ž .class superimposed on the soil classes of the Belgian Soil Map De Coninck, 1963 .
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. Ž .Gruijter et al., 1997 using the FuzME software ACPA, 1999 . The Fuzzy k-means
Ž .clustering algorithm Dunn, 1974; Bezdek, 1975 is a generalization of the classical

Ž .‘hard’ k-means clustering algorithm. Later on, de Gruijter and McBratney 1988
extended the ‘fuzzy k-means’ algorithm to allow dicrimination between ‘extragrades’ or
outliers and ‘intergrades’.

ŽFig. 8. Omnidirectional semivariograms of the five continuous soil classes plus the extragrade class lag
.distances are in meters .
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Ž .Fig. 8 continued .

The ‘fuzzy k-means with extragrades’ algorithm requires two parameters to be
Ž . Ž .chosen: the fuzziness exponent w and the extragrade exponent a . Forw, which

Ž .determines the fuzziness of the output, Odeh et al. 1992 proposed a value between 1.12
Ž .and 2 1 corresponds with the classical ‘hard’ k-means clustering . With w set to 1.3,

memberships that were neither too fuzzy nor too hard were obtained. The extragrade
exponent determines the outlier or extragrade group. In this case, an alpha value as small

y7 Ž .as 2=10 was necessary to obtain an average extragrade membership of 1r kq1 , as
Ž .was proposed by McBratney and de Gruijter 1992 .
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To determine the optimal number of classes, the ‘fuzziness performance index’
Ž .Odeh et al., 1992 was used.

The results of the continuous classification were plotted on a map and an overlay
Ž .with the Belgian Soil Map was made using ArcView 3.1 ESRI, 1998 . Finally, to

demonstrate the spatial autocorrelation of the distinguished soil classes, omnidirectional
semivariograms were computed from the profile memberships. Calculations were done

Ž .with VARIOWIN Pannatier, 1996 .

3. Results

3.1. The delineation of horizon subtypes

Since the procedure for all the horizons is the same, only the results for the C1
horizon are shown.

Principal components 1 and 2 explain 21.9% and 17.7% of the total variance,
Ž .respectively. The biplot Fig. 2 reveals three groups of correlated attributes: a Acolour

groupB with rubification,% ferruginous mottling and chroma; a ApH groupB with the
Ž .pH KCl ; carbonate content; cohesion grade and texture and finally, a lesser important

group of colour value and cohesion type. Given this correlation structure, the configura-
tion of the grid points in the space of the first two principal axes was not significantly

Ž .altered when the rubification, colour value, cohesion grade and pH KCl were selected
for further analysis.

Ž .Marriott’s criterion Fig. 3 indicated an optimal division in four C1 subtypes. The
Ž .scatterplot of the canonical discriminant functions Fig. 4 shows a clear separation of

Ž .the groups along the two axes. The pH KCl on axis one and rubification on axis two
appeared to be the most important discriminating attributes:

subtype C1-1 has the lowest pH and a relatively high degree of rubication
subtype C1-2 has a relatively high pH and the lowest degree of rubification
subtype C1-3 has the highest pH and a relatively high degree of rubification
subtype C1-4 has a relatively low pH and the highest degree of rubification.

Similarly, the A1, A2, C2 and 2C1 horizon were split up in three, three, four and
three types, respectively. So, together with the A3, Ab, C3 and 2C2 horizons, a total of
21 horizon types and subtypes were distinguished.

3.2. Continuous soil profile classification

ŽThe ‘fuzziness performance index’ stabilised between four and five soil classes Fig.
.5 . However, a better interpretation of the extragrade class was possible when five

Ž .continuous soil classes were distinguished. The centres of the five soil classes Table 3
Ž .were calculated as the average of the horizon sub- type thickness, weighted by the

profile membership to the respective soil class. The five continuous soil classes can be
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Ž .considered as variants of Gleysols FAO et al., 1998 . From Table 3 it appears that the
discrimination among the five soil classes is mainly due to differences between the A2,
C1 and 2C1 horizons. Since class 2 only differs from class 1 by a more variable C1
horizon, soil class 2 can be regarded as a phase of class 1. Class 1 and its phase differ
from class 3, 4 and 5 by their highly variable A2 horizon and their different C1 and 2C1
horizons. Class 3 compared to class 4 has a different C1 horizon and a less variable 2C1
horizon. Finally, class 5 differs from the other classes by a different and thicker A2
horizon, a different C1 horizon and a thin 2C1 horizon. Due to the presence of artefacts
Ž .bits of brick and pottery in the A horizon, this class can be regarded as a Plaggic

Ž .Gleysol FAO et al., 1998 . Most profiles that were classified as extragrades had a very
Ž .thick more than 50 cm A horizon rich in artefacts. Hence, the extragrade class consists

Ž .mainly of Plaggic Anthrosols FAO et al., 1998 . In Fig. 6, exemplary profiles of the
five classes plus the extragrade class are visualised.

Ž .The spatial distribution of the different soil types Fig. 7 reveals that most of the
distinguished soil classes exhibit a fair degree of spatial dependency. This is confirmed

Ž .by their respective semivariograms Fig. 8 from which it appears that notably classes 1,
3 and 5 exhibit a high degree of spatial autocorrelation. On the other hand, the phase of
class 1, class 4 and the extragrade class are not strongly spatially autocorrelated. For

Ž .class 4, this is probably due the presence of spatial anisotropy Fig. 7 .
Finally, Fig. 7 also illustrates that the distinction between Plaggic Anthrosols and

Gleysols on the Belgian Soil Map coincides relatively well with the distinction between
Ž .soils with Plaggic properties class 5 and the extragrade class and Gleysols in our

continuous classification.

4. Discussion

The numerical soil classification system developed can be regarded as a solution for
Ž .what Duchaufour 1982, pp. 159 called the dilemma of soil classification: there has to

be a framework to group the major soil classes of the world but at the same time, soil
classification has to provide a means of making large-scale maps for practical purposes,
which often necessitates detailed characteristics that are only of local importance. In our

Žstudy, the fit in existing frameworks for soil classification in this case the Belgian Soil
.Classification System and the W.R.B. for Soil Resources was assured by using horizon

types and subtypes to classify the soils. This allowed us to identify both Plaggic
Anthrosols and Gleysols as was already done on the Belgian Soil Map. However, at the
same time, it was also possible to distinguish five local variants of the latter soil type.

Furthermore, while in most conventional classification systems a choice between the
Ž .soil properties and their relative importance is made Duchaufour, 1998 , this is not the

case with the developed system. The use of numerical techniques allows the selection of
those soil properties that maximally account for the in-situ variation of the soils which is
of relevance for land use assessment. In this case, the combination of the pH, substratum
type, moisture regime and thickness of the A horizon were the most important attributes
for the discrimination among the soil classes. Since the distinguished soil classes explain
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Žthe distribution of the herbaceous woodland flora very well Verheyen and Hermy,
.2000 , it can be concluded that a major part of the in situ variation of the Muizen Forest

soil is indeed covered by these soil classes.
Finally, evidence for the appropriateness of the applied method comes also from the

spatial autocorrelation of the distinguished soil classes. While strong spatial autocorrela-
tion of the soil classes does not necessarily imply the presence of well-defined classes in

Ž .the attribute space and vice versa Burrough et al., 1997 , spatial autocorrelation does
mean that the augerings are not allocated to the classes by chance alone. Furthermore, it
suggests that some spatially correlated physical processes caused the differentiation
among the soil classes.

Although above-mentioned arguments illustrate the aptness of the applied technique,
some remarks are nevertheless warranted.

First of all, it is recognised that the use of morphological attributes like colour
variation, consistence, . . . derived from augerings may add an additional ‘vagueness’ to

Ž .the data set Burrough, 1989; McBratney and de Gruijter, 1992 . However, since
morphological descriptions of augerings are cheap and not labour-intensive, it is possible
to perform augerings at many locations and, consequently, to maximise detail in the
geographical space.

Next, the use of horizons as building bricks towards soil profile membership
classification and therefore, the incorporation of the soil profile anisotropy, makes the
analysis very complex and consequently, many choices had to be made. For instance, it
was decided to use ‘crisp’ clustering techniques for the delineation of the horizon

Ž .subtypes, while McBratney 1993 feels it would be more fruitful to have continuous
gradation between horizon classes, better reflecting the intergrading nature of soil
horizons. However, since the profiles are also continuously classified, this would result

Ž .in double fuzzy soil classes e.g. Ameskamp, 1997 . Although practically possible and
probably conceptually more sound, it would have been very difficult to interpret the
double fuzzy soil classes. After all, the ultimate goal of soil classification is to find an

Žoptimal compromise between effective soil data structuring and limited loss of detail de
.Gruijter et al., 1997 .

Ž .Finally, concerning the fuzzy clustering algorithm, McBratney and de Gruijter 1992
already pointed out that the choice of the fuzziness and the extragrade exponent, as well
as the determination of the optimal number of classes, is rather subjective. Since for the
determination of the optimal number of classes one disposes over some objective criteria
Ž . ŽOdeh et al., 1992 and for the fuzziness exponent one is guided by common sense the

.results may not be too diffuse, neither too discrete , only the choice of the extragrade
exponent remains highly subjective.

5. Conclusions

In this paper, the aptness of semi-quantitative morphological soil profile descriptions
for numerical soil classification is explored. The use of horizons combined with the
delineation of horizon subtypes ensures the compatibility with national or global soil
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classification systems based on diagnostic horizons and properties on the one hand and
the production of high-resolution soil classes for local use on the other. Furthermore, the
developed technique allows reanalysis and optimisation of data from previous surveys.

Acknowledgements

The authors thank Roel Van de Moortel for his assistance during the field work and
Bea Bossuyt and two referees for their comments on the manuscript. We are also
grateful to Alex McBratney, Australian Centre for Precision Agriculture, for putting the
FuzME software at our disposal. The paper was written while the first author held a
grant from the Flemish Institute for the Encouragement of Scientific and Technological

Ž .Research IWT .

References

ACPA, 1999. FuzME. Fuzzy k-Means with Extragrade Program. Australian Centre for Precision Agriculture,
The University of Sydney. http:rrwww.usyd.edu.aursuragricracparpag.htm.

Ameskamp, M., 1997. Three-dimensional rule-based continuous soil modelling. PhD Thesis, Christian-Albre-
chts-Universitat Kiel, Germany.¨

Bossuyt, B., Deckers, S., Hermy, M., 1999. A field methodology for assessing man-made disturbance in forest
soils developed in loess. Soil Use Manage. 15, 14–20.

Bouma, J., Stoorvogel, J., van Alphen, B.J., Booltink, H.W.G., 1999. Pedology, precision agriculture, and the
changing paradigm of agricultural research. Soil Sci. Soc. Am. J. 63, 1763–1768.

Burrough, P.A., 1989. Fuzzy mathematical methods for soil survey and land evaluation. J. Soil. Sci. 40,
477–792.

Burrough, P.A., van Gaans, P.F.M., Hootsmans, R., 1997. Continuous classification in soil survey: spatial
correlation, confusion and boundaries. Geoderma 77, 115–135.

Ž .Bezdek, J.C., 1975. Mathematical models for systematics and taxonomy. In: Estabrook, G. Ed. , Proceedings
of the Eighth International Conference on Numerical Taxonomy. Freeman, San Francisco, pp. 143–164.

De Coninck, F., 1963. Belgian soil map. Manual for the map Schilde 29W. Centrum voor Bodemkartering,
Ž .Gent, in Dutch .

de Gruijter, J.J., McBratney, A.B., 1988. A modified fuzzy k-means method for predictive classification. In:
Ž .Bock, H.H. Ed. , Classification and related methods of data analysis. Elsevier, Amsterdam, pp. 97–104.

de Gruijter, J.J., Walvoort, D.J.J., vanGaans, P.F.M., 1997. Continuous soil maps—a fuzzy set approach to
bridge the gap between aggregation levels of process and distribution models. Geoderma 77, 169–195.

De Keersmaeker, L., Verheyen, K., Hermy, M., 1999. The distribution of Anemone nemorosa in the Muizen
Ž .Forest B as an example for the colonization by ancient forest species. De Levende Natuur 100, 183–185,

Ž .in Dutch .
Duchaufour, Ph., 1982. Pedologie: Pedogenesis and Classification. Allen and Unwin, London.

ŽDuchaufour, Ph., 1998. Reflexions sur les classifications des sols. Etude et Gestion des Sols 5, 201–205, in´
.French .

Dunn, J.C., 1974. A fuzzy relative of the isodata process and its use in detecting compact, well-separated
clusers. J. Cybernetics 3, 22–57.

ESRI, 1998. ArcView 3.1. Environmental Systems Research Institute, Redlands.
FAO, 1990. Guidelines for Soil Profile Description. 3rd edn. Soil Resources Management and Conservation

Ž .Service, Land and Water Development Division, FAO, Rome, revised .
ISRIC, 1998. World Reference Base for Soil Resources. World Soil Resources Report vol. 84. FAO, Rome.
FitzPatrick, E., 1967. Soil nomenclature and classification. Geoderma 1, 91–105.



( )K. Verheyen et al.rGeoderma 101 2001 31–4848

FitzPatrick, E., 1980. Soils, Their Formation, Classification and Distribution. Longmans, London.
FitzPatrick, E., 1993. Principles of soil horizon definition and classification. Catena 20, 395–402.
GENSTAT 5r4.1, 1997. Genstat for Windows. 4th edn. NAG, Oxford.
Harden, J.W., 1982. A quantitative index of soil development from field descriptions: examples from a

chronosequence in central California. Geoderma 28, 1–28.
Ž .IWONL, 1950. Belgian soil classification. Brussel in Dutch .

Ž .Klijn, F., de Waal, R., 1992. Ecological soil classification. Landschap 9, 175–187, in Dutch .
Marriott, F.H.C., 1971. Practical problems in a method of cluster analysis. Biometrics 27, 501–514.
McBratney, A.B., 1993. Some remarks on soil horizon classes. Catena 20, 427–430.
McBratney, A.B., de Gruijter, J.J.A., 1992. A continuum approach to soil classification by modified fuzzy

k-means with extragrades. J. Soil Sci. 43, 159–175.
Moore, A.W., Russell, J.S., Ward, W.T., 1972. Numerical analysis of soils: a comparison of three soil profile

models with field classification. J. Soil Sci. 23, 193–209.
Norris, J.M., 1971. The application of multivariate analysis to soil studies: 1. Grouping of soils using different

properties. J. Soil Sci. 22, 69–80.
Odeh, I.O.A., McBratney, A.B., Chittleborough, D.J., 1992. Soil pattern recognition with fuzzy c-means:

application to classification and soil–landform interrelationship. Soil Sci. Soc. Am. J. 56, 505–516.
Oliver, M.A., Webster, R., 1987a. The elucidation of soil pattern in the Wyre Forest of the West Midlands,

England: I. Multivariate distribution. J. Soil Sci. 38, 279–291.
Oliver, M.A., Webster, R., 1987b. The elucidation of soil pattern in the Wyre Forest of the West Midlands,

England: II. Spatial distribution. J. Soil Sci. 38, 293–307.
Pannatier, Y., 1996. VARIOWIN. Software for Spatial Data Analysis in 2D. Springer-Verlag, New York.
Rayner, J.H., 1966. Classification of soils by numerical methods. J. Soil Sci. 17, 79–92.
SPSS, 1998. SPSS Base 8.0 User’s Guide. SPSS, Chicago.
Ter Braak, C.J.J., Smilauer, P., 1998. CANOCO Reference Manual and User’s Guide to Canoco for Windows:

Ž .Software for Canonical Community Ordination version 4 . Microcomputer Power, New York.
Theocharopoulos, S.P., Petrakis, P.V., Trikatsoula, A., 1997. Multivariate analysis of soil grid data as a soil

classification and mapping tool: the case study of a homogeneous plain in Vagia, Viota, Greece. Geoderma
77, 63–79.

Vandamme, J., Van Hove, J., 1957. Belgian Soil Map. Addendum for the map Schilde 29W. Centrum voor
Ž .Bodemkartering, Gent, in Dutch .

van den Brink, A., van Eijk, A.W., van Wijland, F., 1999. Soil science in the ‘green space’. Landinrichting,
Ž .16–20, in Dutch .

Verheyen, K., Hermy, M., 2000. An integrated analysis of the spatio-temporal colonization patterns of forest
plants species in a mixed deciduous forest. J. Veg. Sci. submitted.

Webster, R., Burrough, P.A., 1972a. Computer-based soil mapping of small areas from sample data: I.
Multivariate classification and ordination. J. Soil Sci. 23, 210–221.

Webster, R., Burrough, P.A., 1972b. Computer-based soil mapping of small areas from sample data: II.
Classification smoothing. J. Soil Sci. 23, 222–234.

Webster, R., Oliver, M.A., 1990. Statistical methods in soil and land resource survey. Oxford Univ. Press,
Oxford.


